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This paper compares commonly used approaches for estimating the relation between long-horizon
returns and a predetermined variable X, such as dividend yields. Specifically, we look at regressions
of (i) nonoverlapping multiperiod returns on X,, (ii} overlapping multiperiod returns on X, (iii) single-
period returns on multiperiod X,, and (iv) single-period returns on X, and its implied long-horizon
regression coefficient. We provide analytical formulae which quantify the efficiency of the estimators
used in the various approaches. Using the formulae, as well as Monte Carlo simulations, we demon-
strate that the relative efficiency of the estimators used in the various approaches differs remarkably,
depending on the dynamic structure of the regressor. Of special interest for financial economists, when
the regressors are highly autocorrelated, we find that the regressions (ii), (iii), and (iv) provide only
marginal efficiency gains above and beyond the nonoverlapping long-horizon regression.
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l. INTRODUCTION

A plethora of papers exist which investigate the relation between long-horizon stock returns
and predetermined variables, such as current dividend yields, interest rate spreads, and
volatility.2 However, despite this volume of research, little is known about the motivation
for long-horizon tests and, even more important, the statistical properties of these tests.?
This paper fills a void in the existing literature by analyzing the statistics of long-horizon
regressions. In particular, we focus our attention on several procedures for estimating long-
horizon regressions currently used in the finance literature.

We investigate the claim that the use of overlapping observations in calculating long-
horizon relations is far more efficient than using nonoverlapping observations. Clearly, at
some level, this point should come as no surprise to econometricians since nonoverlapping
data ignores information in the time series. Based on an asymptotic argument, Hansen and
Hodrick (1980) provide support for this claim, in a fairly general setting. They provide,
however, no discussion of the magnitude of the benefit from the use of overlapping obser-
vations. Richardson and Smith (1991) do manage to quantify the benefit when the regressor

I'We would like to thank Bob Cumby, George Tauchen, Stephen Taylor, Rob Whitelaw, seminar participants
at Duke University, and two anonymous referees for helpful comments and suggestions.

2See, for example, Kandel and Stambaugh (1988), Fama and French (1988, 1989), Cochrane (1991a), Bekaert
and Hodrick (1992), Boudoukh and Richardson (1993), and Hodrick (1992), among others.

3Some recent exceptions are Campbell (1993b) and Stambaugh (1993), who describe advantages of long-
horizon regressions in terms of their potential power relative to short-horizon regressions; and Goetzmann and
Jorion (1993) and Nelson and Kim (1993), who describe some of the biases that arise in using long-horizon
regressions. The relation of this work to those papers will be discussed in Section 4.
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is a lagged value of the dependent variable. No results have been given, however, for the
more current and more relevant literature regarding regressions of long-horizon returns on
predetermined (i.e., instrumental) variables.

In a statistical setting of particular interest to financial economists, we analytically quan-
tify the efficiency of using overlapping data and provide support for our results via simu-
lation evidence. As a preview, our main result is that this efficiency is directly tied to the
dynamic structure of the regressor. For example, with highly autocorrelated regressors (as
is usually the case in monthly financial time series), overlapping observations buys the
econometrician very little in the form of efficiency. For example, consider regressing five-
year stock returns on its dividend yield using monthly data over a 60-year period. Suppose
further that the autocorrelation of the predetermined variable is .98, as is the case for the
monthly price-dividend ratio series. The benefit of using overlapping observations can be
quantified as the ratio of the variance of the regression coefficient for the nonoverlapping
versus the overlapping case. This ratio is, for our example, 1.44. Put differently, the use of
approximately 60 times more observations buys us variances only 30.6% tighter. Similar
results are obtained for finite samples, as is demonstrated via simulations. This suggests
that researchers should be cautious in their interpretation of results in long-horizon settings
and not be deceived by the apparently large number of observations available through the
use of overlapping data.

In contrast, the gains to using overlapping data can be substantial when the autocorrela-
tion of the regressor is reduced. For example, consider regressing five-year stock returns
on one-year inflation rates using annual data over the past 200 years (see Boudoukh and
Richardson 1993). Since the autocorrelation of inflation is approximately .5 over this pe-
riod, it is possible to show that the ratio of variances of the estimators from using non-
overlapping versus overlapping data is 2.2. Roughly speaking, using 200 overlapping ob-
servations here is equivalent to using 88 nonoverlapping observations in terms of the
efficiency of the estimator. While the gains to using overlapping data can clearly be large,
researchers recognize its limitations. In particular, in terms of providing usual tests of sig-
nificance, the drawback of performing regressions of long-horizon returns on predeter-
mined variables is that it requires the estimation of the variance-covariance matrix of seri-
ally correlated errors (see Richardson and Smith 1991 and Hodrick 1992). Since this
necessitates estimation of numerous autocovariances, the small-sample properties of these
statistics suffers.

Therefore, some researchers have argued against this strategy in favor of an alternative
method, which calls for the regression of single-horizon returns on the same predetermined
variable, except that this predetermined variable is now calculated over long horizons.
Hodrick (1992), for example, argues that this procedure can have better small sample prop-
erties while capturing the important information contained in the long-horizon method.*
The idea is simple—this alternative method avoids the practical limitations of having to
calculate standard errors in the presence of overlapping observations, since it falls within
the standard ordinary least-squares framework. Furthermore, since both methods estimate
the same multiperiod covariance between returns and the predetermined variable, there is
apparently little cost in switching to the second method.

This claim can be misguided. It turns out that, while the calculation of standard errors
are less subject to sampling error, there are potentially large costs to using the alternative

4Cochrane (1991a) also argues for transforming the long-horizon regression in this way.
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method in terms of the small sample efficiency of the estimator itself. The intuitive expla-
nation is that the alternative method involves calculating the multiperiod variance of the
regressor while the original long-horizon method requires only the single-period variance.
In small samples, this distinction can have profound effects. Consider, for example, com-
paring the original method in which we regress 10-year stock returns on a predetermined
variable with an autocorrelation of .99, to the alternative method in which we regress
monthly stock returns on 10-year aggregates of the predetermined variable, using data over
a 60-year period. We show that the latter method provides variances 318.5% larger than the
original method. It is fairly clear therefore that using the alternative procedure can lead to
losses of efficiency in small samples. Thus, researchers should be especially cautious in
applying this method to data.

We also provide some new discussion on the benefits and drawbacks of using a long-
horizon regression versus a short-horizon regression approach. Recent research by Kandel
and Stambaugh (1988) and Hodrick (1992) suggests that calculating implied long-horizon
coefficients from short-horizon regressions of returns on predetermined variables may be
preferred to estimating analogous coefficients from regressions of long-horizon returns on
the same predetermined variables. '

Our extension of this literature is to quantify the benefit of using the short-horizon ap-
proach. Our main result is that the short-horizon method can often provide remarkable
gains in terms of efficiency, although these are only marginally beneficial for highly auto-
correlated regressors. As an illustration, to coincide with previous examples, consider re-
gressing five-year stock returns on a highly autocorrelated predetermined variable. The
benefit to using the implied long-horizon coefficient relative to using the actual long-
horizon coefficient can be essentially zero (in terms of the tightness of the variances). In
contrast, consider the same regression using monthly data and assume that the predeter-
mined variable is uncorrelated through time. The variance of the short-horizon approach is
1/60 that of overlapping multiperiod regressions, and 1/3600 that of nonoverlapping multi-
period regressions!

It is important to point out that the focus of this paper is the efficiency of long-horizon
estimators under the null hypothesis of no predictability. The aforementioned results are
theoretical, with support from empirical small sample distributions. Using the data to cal-
culate a measure of efficiency, such as OLS standard error estimates, is besides the point.
Either the standard error calculations reach the same conclusions as we have here or they
are not good measures in small samples. For the case of highly autocorrelated regressors,
researchers should therefore not be fooled by the apparently large number of observations,
and should be wary of small estimated standard errors (the magnitude of the variances of
the regressor and regressand aside).

This paper is organized as follows. Section 2 provides the statistical setting for our analy-
sis. Section 3 gives the main results of the paper. Specifically, we provide analytical results
and supporting simulation evidence with respect to each of the aforementioned claims in
the literature. In Section 4, we discuss some related work in this area and provide directions
for future research.

2. STATISTICAL FRAMEWORK

In this section, we lay out the statistical setting of the long-horizon regression problem
looked at throughout the paper. There has been substantial interest in the finance literature
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at trying to understand the relation between long-horizon returns and predetermined vari-
ables. Let us denote the coefficient describing this relation in a J- period regression context
as 3,. Some examples of this research (although not exhaustive of the literature) include
Campbell and Shiller (1987), Fama and Bliss (1987), Kandel and Stambaugh (1988), Fama
and French (1988, 1989), Cochrane (1991a,b), Bekaert and Hodrick (1992), Hodrick
(1992), Boudoukh and Richardson (1993), Campbell (1993a), Goetzmann and Jorion
(1993), and Nelson and Kim (1993). In terms of the predictability of returns, authors have
found more significant economic and statistical evidence at long horizons (e.g., see Fama
and Bliss 1987; Fama and French 1988; Hodrick 1992).5 Across this large volume of re-
search, a variety of procedures has been developed for inferring long-horizon relations.
Although the statistical procedures vary across these papers, the initial focus had been on
understanding the regression

2.1) Ry = ool + ool X, ; + €9,

where R, ,.; = continuously compounded return from rto ¢ + J,
sampled every J periods,
X, ; = predetermined variable, sampled every J period,
,85‘01 = regression coefficient using nonoverlapping observations.

Equation (2.1) describes a regression of long-horizon returns on a predetermined variable,
X,, using nonoverlapping data. Prior to the work of Hansen and Hodrick (1980), regres-
sions like (2.1) were the standard approach to estimating multiperiod systems, due to the
simple dynamic structure of the error term, e‘t‘f}l. However, during the past decade, regres-
sion equation (2.1) has been modified in an attempt to improve the efficiency of estimators
of B,. This paper provides a quantitative analysis of the relative efficiency of these modified
procedures.

Before proceeding with our analysis, it is necessary to make some additional simplifying
assumptions:

+ We look at the properties of the regression coefficients under the null hypothesis of
no predictability, i.e., B; = 0. We do this to coincide with the majority of empiri-
cal studies which focus on this hypothesis. Extensions to alternative hypotheses, i.e.,
B, # 0, are straightforward, though cumbersome, in our framework (see Campbell
1993b and Stambaugh 1993).

« We investigate (2.1) under the assumption that the predetermined variable follows a
first-order autoregressive process

(2.2) X, =un+pX,. | +1,

where 7, is an i.i.d. mean-zero random variable. Campbell (1993b), Stambaugh (1993),
and others have found this specification particularly useful in illustrating the predict-
ability of stock returns. Moreover, for many of the relevant financial data series, an

3These conclusions, however, are not entirely uncontroversial; for example, Goetzmann and Jorion (1992) and
Nelson and Kim (1991) question the small-sample properties of long-horizon regressions. In an interesting paper,
Foster and Smith (1992) suggest that much of the evidence on predictability is overstated, basing their argument
on a formal analysis of data snooping.
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AR(1) seems to be fairly representative. Extensions to more elaborate ARMA pro-
cesses are possible in this setting, and are left for future work.

» For convenience, we focus only on univariate X,. Extensions to multlvarlate X,, which
could for example include dividend yields, volatlhty, and interest rates in the same
regression, are potentially interesting. However, in terms of understanding the statistics
of long-horizon regressions as implied by the various procedures, the extension is of
less importance.

» We do not allow for heteroskedasticity in the disturbance terms in (2.1) or (2.2).
Heteroskedasticity is not the focus of our paper and is thus beyond its immediate scope.
A detailed analysis is provided by Stambaugh (1993), and his work is discussed in
Section 4.

Throughout the paper, we explore the statistical properties of regressions analogous to
(2.1). Our general approach will be to derive asymptotic analytical comparisons of the
various methodologies. Specifically, we compare the asymptotic variances of the estimators
from the various methods under the null hypothesis of no predictability.® To provide some
supporting evidence of small-sample behavior of the regression coefficients, we employ a
Monte Carlo simulation method. In particular, for each combination of J and p, we conduct
1000 replications of each simulation under the null hypothesis that the predetermined vari-
able is independent of the dependent variable. The errors are generated from a mean-zero
normal distribution, where the unconditional variance of the predetermined variable is kept
fixed.

3. ECONOMETRICS OF LONG-HORIZON REGRESSIONS

3.1. Overlapping versus Nonoverlapping Observations

Consider the following alternative regression to (2.1):

J
(3.1) > Ry = adt + BOIX, + €,(J),
=1

where R, = continuously compounded return from r — 1to ¢,
X, predetermined variable, such as a portfolio’s dividend yield,
ol regression coefficient using overlapping observations,
€,(J) = J-sum of mean zero uncorrelated disturbance terms:
€ + €. -+ €., ,under the null hypothesis 89! = 0.

I

The only difference between (2.1) and (3.1) is that the latter uses overlapping data while
the former simply samples the data every J periods. That is, (3.1) employs T observations

5This comparison has asymptotic justification via the approximate slope procedure of Bahadur (1960) and
Geweke (1981). In particular, results in those papers imply that, for this particular example, the ratio of variances
roughly corresponds to the ratio of observations needed to achieve the same power under any alternative. Hence,
if the ratio, var(87°")/var(83"), is 2 to 1, then approximately twice as many observations are required from the
nonoverlapping approach, where 83" is the coefficient estimator from the alternative method. For more extensive
discussion of the approximate slope procedure as applied in finance, see Richardson and Smith (1991, 1992) and
Campbell (1993b).
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in estimation, while (2.1) uses only T/J observations. Intuition suggests that (3.1) will lead
to more efficient estimates of the coefficient describing the regression of J-period returns
on X,. This intuition is confirmed quite generally in Hansen and Hodrick (1980), who show
that overlapping data will lead to asymptotically more efficient estimators. They justify
their results by appealing to the approximate slope procedure of Bahadur (1960) and Ge-
weke (1981). In addition, their results have been quantified by Richardson and Smith
(1991), who show that, in the special case of estimating multiperiod autocorrelations, over-
lapping observations provide approximately 50% more observations. As yet, no quantifi-
able comparison has been performed for the more general multivariate setting described by
(2.1) and (3.1). However, this approach of Richardson and Smith (1991) is straightforward
to apply in this setting.
To see this, note that the normal equations from regression (3.1) are simply

= &(J) -
ELF(O)] = E<e,< J)X) 0

Under the null that 8, = 0, and applying results from Hansen (1982), the vector of regres-
sion coefficients § = (d?1 B?l)' has an asymptotic normal distribution with mean (; 0)’
and variance-covariance matrix [D§Sg' Dol ', where Dy = E[df/80) and Sy = 27~
ELf, f+-;). Under the assumptions described in Section 2. and for a given overlap of /, it 1S
possible to calculate Dy and S analytically. Specifically,

1 e
Dy = - <),
0 (u py ot U%)
J2o% J2oh

So = -1}

2 1 —
J2okp, JPogu, t U%U;’;[J + 7 £ (J -1 - p—l——p———]

- p - p

where u, is the mean of X, o2 is the unconditional variance of X,, o4 is the variance of
single period returns R, and recall that p is the AR(1) parameter on X,.

Using D and S above, and performing the necessary matrix calculations, it is possible
to derive the asymptotic variance of B§':

. 2 L - p!
(3.2) varBy = 2 s+~ (1 - - o]
oL 1 —p 1 —p

‘xw

Note that as the length of the horizon J increases, sO does the variance of the regression
coefficient, /3’31 More interesting is that, as p increases (i.e., as X, approaches a random
walk), the variance also increases. This suggests that for highly autocorrelated regressors
(as is usually the case in financial series) the precision of the estimator in the presence of
overlapping data vastly diminishes.

In contrast, with respect to regression equation (2.1), and using straight OLS theory, itis
possible to calculate the asymptotic variance of the regression coefficient, B;“". Noting that
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only T/J observations are now used in estimation and thus making the necessary adjust-
ment for comparison with (3.2), we find that

(3.3) var(B1oly = J2o%io?.

Comparing the variances of B};Ol and B‘J’l leads to the immediate result that using over-
lapping observations is more efficient than using nonoverlapping observations. Table 3.1A
provides the relative efficiency of the overlapping versus nonoverlapping method for dif-
ferent horizon length J and different autocorrelation parameter p. For example, consider
the case in which X, is independent through time; i.e., p = 0. As one might expect, the
advantage of using overlapping observations is large in this instance. At J = 60, over-
lapping regression equation (3.1) is 6000% more efficient than nonoverlapping regression
equation (2.1). This result indicates that using overlapping data provides the econometri-
cian with an enormous efficiency gain in this instance, and more generally with predeter-
mined variables characterized by low persistence. Put differently, for p = 0, the J-period
overlapping regression provides roughly J times more observations than the nonover-
lapping regression.

In contrast, this benefit is almost completely eliminated for highly autocorrelated X,. For
example, for J = 60 and p = .99, overlapping regression equation (3.1) is only 21% more
efficient than nonoverlapping regression equation (2.1). With respect to applications of
long-horizon regressions in finance, this is an especially interesting result for several rea-
sons. First, most predetermined variables (which are used in long-horizon return regres-
sions) are highly autocorrelated. For example, for monthly data, popular instrumental vari-
ables, such as dividend yields, corporate bond spreads, and interest rate levels, have first-
order autocorrelations of .98, .97, and .99, respectively (see, for example, Whitelaw 1992).
Thus, as seen in Table 3.1A for highly autocorrelated regressors, the use of overlapping
observations provides only marginal efficiency benefits.

Second, there are costs to using overlapping observations in practice. Due to the induced
serial correlation in the OLS errors, estimation procedures using overlapping observations
require calculation of a consistent estimator of the variance-covariance matrix. This calcu-
lation involves numerous estimates of autocovariances at various lags, which can lead to
difficulties in small samples for test statistic applications (see Richardson and Smith
1991).7 Therefore, given the highly autocorrelated regressors used in practice, and the dif-
ficulties with overlapping observations, researchers should be cautious in their application
of long-horizon regressions.

For example, consider using 720 monthly observations to forecast five-year returns. If
the forecasting variable, X,, were uncorrelated through time, then the overlapping approach
would be as efficient as a nonoverlapping regression which uses 720 five-year independent
observations, or roughly 3600 years of data! However, if the autocorrelation of X, were
.99, then the overlapping approach would be as efficient as a nonoverlapping regression
which uses 14 five-year independent observations, or only 10 more years of data than we
had initially. Since most researchers would be a priori cautious of regressions with only

71t is possible to avoid these difficulties in some circumstances by calculating the variance-covariance matrix
directly under the null as in (3.2). For more detailed discussions of this approach, see Richardson and Smith
(1991) and extensions to multivariate data in Hodrick (1992). However, as pointed out by Campbell (1993), for
some alternative models of interest, it may be beneficial not to impose the null 8, = 0 when estimating standard
EITOTS.
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TaBLE 3.1
Nonoverlapping, Overlapping, and Implied Regressions—Asymptotic Results

J p = 0.00 p =0.50 p =09 p = 0.95 p = 0.99

A: Nonoverlapping versus Overlapping

1 1.00 1.00 1.00 1.00 1.00

2 2.00 1.33 1.05 1.03 1.01
12 12.00 4.50 1.46 1.21 1.04
24 24.00 8.47 1.98 1.45 1.08
60 60.00 2045 3.75 2.23 1.21
120 120.00 40.45 6.86 3.67 1.44

B: Nonoverlapping versus Implied

1 1.00 1.00 1.00 1.00 1.00

2 4.00 1.77 1.10 1.06 1.02
12 144.00 36.00 3.38 1.69 1.11
24 576.00 143.99 6.79 2.87 1.25
60 3600.00 899.80 36.15 9.90 1.75
120 14400.00 3600.05 144.06 36.15 294

The table provides a comparison of the relative efficiency of the long-horizon regression coefficient using three
methods: (i) overlapping observations, (ii) nonoverlapping observations, and (iii) the implied coefficient from
short-horizon regressions under AR(1). The estimation involves the regression of a J-period return on a predeter-
mined variable, X,, which follows a first-order autoregressive process (with corresponding parameter p). Panel A
provides the analytical asymptotic ratio between the variance of the nonoverlapping regression coefficient and the
overlapping regression coefficient for various values of J and p. Panel B provides the analytical asymptotic ratio
between the variance of the nonoverlapping regression coefficient and the implied regression coefficient.

14 observations, the evidence here puts into question long-horizon regressions as a viable
alternative approach.

The analytical results in Table 3.1A suggest that the strategy of using overlapping obser-
vations is highly sensitive to the degree of autocorrelation of the predetermined variable.
These analytical calculations, however, are only strictly valid asymptotically. It seems
worthwhile exploring whether the intuition carries through to small samples. Using the
Monte Carlo simulation described in Section 2, we compare the small sample variances of
B9 and B9°!, as calculated from their respective Monte Carlo empirical distributions. In
particular, to coincide with existing studies, we choose the number of observations T equal
to 720; the level of the autocorrelation parameter p to take the values (0, .5, .9, .95, .99);
and the horizon length J to take the values (2, 12, 24, 60, 120). The results for these simu-
lations are provided in Table 3.2A.

The results in Table 3.2A generally support the analytical calculations given in Table
3.1A. In particular, there are tremendous gains from using overlapping observations for
independent X,, but these gains greatly diminish as we increase the autocorrelation pa-
rameter. For example, for p = 0, the ratio of variances is 2.02, 13.99, 28.41, 70.06, and
260.18 when J equals 2, 12, 24, 60, and 120 respectively. In contrast, for p = .99, the ratio
is only 1.02, 1.04, 1.14, 1.30, and 2.72 when J equals 2, 12, 24, 60, and 120 respectively.

Note that, for J equal to 60 and 120, the benefits are slightly higher in Table 3.2A than
those implied by the analytical results in Table 3.1A. However, this is not due to increased
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TABLE 3.2
Nonoverlapping, Overlapping, and Implied Regressions—Simulation Results

J p = 0.00 p =0.50 p=09 p =095 p =099

A: Nonoverlapping versus Overlapping

1 1.00 1.00 1.00 1.00 1.00

2 2.02 1.42 1.08 1.04 1.02
12 13.98 4.75 1.46 1.28 1.04
24 28.41 9.92 2.28 1.57 1.14
60 70.06 28.20 4.49 2.92 1.30
120 260.18 85.19 13.25 7.56 2.72

B: Nonoverlapping versus Implied

1 1.00 1.00 1.00 1.00 1.00

2 4.19 1.87 1.17 1.07 1.03
12 162.95 38.62 2.96 1.99 1.16
24 718.49 171.81 8.21 3.26 1.60
60 4340.22 1079.07 42.82 14.69 2.49
120 33022.83 7145.40 264.59 84.66 7.55

The table provides a comparison of the relative efficiency of the long-horizon regression coefficient, calculated
from a Monte Carlo empirical distribution using 720 observations and 1000 replications. Three methods are used:
(i) overlapping observations, (ii) nonoverlapping observations, and (iii) the implied coefficient from short-horizon
regressions under AR(1). The estimation involves the regression of a J-period return on a predetermined variable,
X,, which follows a first-order autoregressive process (with corresponding parameter p). Panel A provides the
ratio between the simulated variance of the nonoverlapping regression coefficient and the simulated variance of
overlapping regression coefficients for various values of J and p. Panel B provides results similarly for the ratio
between the variance of the nonoverlapping regression coefficient and the implied regression coefficient.

small sample efficiency from the use of overlapping observations above and beyond the
efficiency implied by the asymptotic theory. Instead, it reflects the even worse small sample
properties of using nonoverlapping regressions with only 6 and 12 observations (most
probably due to degrees of freedom being used in estimation). To check this, we also per-
formed simulations using a smaller number of observations, e.g., T equal to 240 (not re-
ported in Table 3.2A). For each J, the ratio of variances of the estimators from regressions
using nonoverlapping and overlapping data, respectively, were higher with 7 = 240 than
with T = 720. This suggests that the asymptotic theory breaks down at smaller sample
sizes. Of course, most researchers would not perform regressions with six observations.
The results in Tables 3.1A and 3.2A imply that using overlapping data (for highly auto-
correlated regressors) should not change this practice in any meaningful way.

3.2. Transforming Long-Horizon Regressions—1Is It Sensible?

As mentioned in Section 3.1, one criticism of the long-horizon regression approach is
that, in calculating asymptotic distributions, the procedure requires estimation of the vari-
ance-covariance matrix of the normal equations in the presence of overlapping data. This
can lead to poor small-sample properties when the procedure is applied in practice to data.
As a result, a number of papers, most notably Hodrick (1992), have posited an alternative
method for long-horizon regressions which avoids the overlapping data difficulty (see also
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Jegadeesh 1991 and Cochrane 1991a, among others). This alternative method switches the
regression from J-period returns on the predetermined variable to a regression of single-
period returns on the same predetermined variable aggregated over J-periods. The idea is
that this alternative method falls under standard OLS theory, but nevertheless captures the
important covariations between returns and the predetermined variable at long horizons.

For purposes of illustration, first consider the case in which the predetermined variable
X, is independent through time; i.e., p = 0 1n (2.2). Hodrick (1992) and others suggest the
following alternative regression to (3.1):

J
1
(3.4) Riy = + B~ 21 X,y + €l
p=
where R,.; = continuously compounded return from t to t + 1,
,85‘ = regression coefficient using the Hodrick methodology,

J
Z X,.;y = J-period sum of the predetermined variable.
=1

Note that the corresponding OLS coefficients from regression (3.1) and (3.4) can be
written as

A COV(E{'=1 Rr+i: Xt)
5 g = ’
(3.5) Bj var(X,)

. cov(R,,1, 21y X, p)
36 ho— t+1 =1 Dpri-J .
(3.6) Pr = iy var S L, X i)

Both numerators of the estimators, BA?I in (3.5) and ,BAﬁ in (3.6), converge in probability
to the sum of the true autocovariances of R, and X, ;-;, denoted Cg x(J). Under station-
arity, there is no reason to expect the numerator of B?l to be a “better” estimator than the
numerator of 3 ? (or vice versa) in small samples.

Similarly, if X, is independent through time, then the denominators of both estimators
converge to the same value: the true variance of X, denoted o2. In contrast to the conver-
gence of the numerator, however, we might expect that in small samples the one-period
variance estimator behaves “better”” than the J-period estimator. This is because for large
J we are effectively reducing the sample size and thus the reliability of the variance esti-
mator. Richardson and Stock (1989) provide a formal discussion of this intuition, and show
that, under a different asymptotic setting, the J-period variance estimator may not be con-
sistent. Of practical value, their asymptotic setting seems to provide more accurate approxi-
mations in small samples for large J.

In terms of the more standard asymptotic theory in this paper, note that the asymptotic
variance of the one-period and J-period variance estimators are, respectively, My — (02 )2
and M, + [J(J — 2)&4J — 1)/3J2] (0"% )2, where M, is the fourth central moment of X,.
For example, in the case of normality, the ratio of the variance of the J-period estimator to
the one-period estimator is higher, i.e., § + 3J. Nevertheless, ,[?31 and B’} are functions of
not only these variance estimators, but also of the estimators for Cy x(J). Hence, although
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the alternative methodology seemingly uses the less reliable variance estimator, it is im-
portant to understand how this estimator interacts with the estimator for Cg (/). In fact,
under the above assumptions, it turns out that the asymptotic variances of the two estima-
tors, B9 and B7 are the same, namely J ¢0%/c%. Thus, at least asymptotically, there is no
efficiency gain either way.

Unfortunately, as mentioned above, in small samples and for large J, there is reason to
believe that this asymptotic justification breaks down (Richardson and Stock 1989). It
seems worthwhile exploring this point via a Monte Carlo simulation. Table 3.3 provides a
comparison of the distribution of Bj" and ,BAﬁ for regressions using 720 observations, with
values of p equal to 0, .95, and .99, and values of J ranging over 12, 24, 60, 120, and 240.
Note that the distributions in Table 3.3 have been adjusted by a constant reflecting the true
value of the estimator’s variance divided by T — J.8 Thus, the empirical distribution of the
estimators, ,331 and ,[951 obtained via the Monte Carlo simulation should reflect a N(0,1)
distribution if the asymptotic theory is a good approximation in small samples. As is clear
from Table 3.3, this approximation gets progressively worse as we increase the horizon
length J.

In terms of the efficiency of the estimators under the null hypothesis, the distribution of
the estimator, 3 31, is relatively tighter than the corresponding distribution of the alternative
estimator, ,@7 in small samples. This is especially true as J is increased, confirming the
intuition above regarding the unreliability of the multiperiod variance estimator for o2. For
example, consider the horizon length J = 120. The variance of the estimator from regres-
sion (3.4) (i.e., var(,éjl ))is 2.0, 2.3, and 3.2 times the variance of the estimator from re-
gression (3.1) (i.e., var( ,331)), for p equal to 0, .95, and .99, respectively. For even larger J,
the results are even more damaging tfor the alternative estimator B’] For instance, in the
extreme case of J = 360, the variance of ,éj‘ is 18.1, 24.9, and 63.2 times greater than the
variance of ,@31, which also suggests that the problem worsens when using highly auto-
correlated regressors.

The above intuition and the results in Table 3.3 suggest that researchers should be cau-
tious in adopting regression equation (3.4) in lieu of the regression equation in (3.1). The
advantage is that the econometrician can avoid some of the difficulties inherent in calculat-
ing test statistics in the presence of serially correlated errors (i.e., induced by overlapping
data in (3.1)). However, the disadvantage is that the estimators themselves are less efficient
in small samples, and that this efficiency worsens as the horizon length increases. The
problems with overlapping data can be rectified if the econometrician is willing to impose
structure on the errors, as in Richardson and Smith (1991) or in Hodrick’s (1992) extension
to multivariate data (though this may depend on the econometrician’s interest in alternative

8 For any p, the transformed regression is actually

J

1
f(/) 7 ; X[+f—j + 5:1+1 (),

— pd-1
Flp, J) = [.1 L2 <J -1 - pl——ﬁ——ﬂ.
) Il —-p

The regression is transformed by a constant in this way so as to make the regression coefficients from the two
methods comparable.

— V;
Ry = ah + Bj

where




TABLE 3.3
Comparison of Long-Horizon Regression Specifications

Var. of Reg. Coeff.

Regres- Percentiles Asymp- Ratio of

sion J p .05 10 50 .9 .95 Estimated totic Var.
Jon l 12 0.000 -—1.644 —1262 0.033 1.292 1.669 0.017 0.017

lonJ 12 0000 -—1.655 —1273 0.032 1.280 1.607 0.017 0.017 1.006
Jon 1 12 0950 —1509 —1.180 0.080 1.369 1.777 0.177 0.168

lonJ 12 0950 —1.646 —1.233 0.061 1.417 1.862 0.190 0.168 1.074
Jonl 12 0990 —1974 —1.579 0.015 1.503 2.004 0.303 0.196

fonJ 12 0990 —2225 —1.668 0.067 1.531 2.003 0.334 0.196 1.103

Jonl 24 0000 -—-1.640 —1.220 0.039 1.262 1.622 0.034 0.034
lonJ 24 0.000 —1.766 —1417 0.003 1312 1.774 0.040 0.034 1.167
Jonl 24 0950 —1.748 —1351 —0.015 1.352 1.660 0.597 0.572

lonJ 24 0950 —1706 ~—1.322 —0.010 1276 1.606 0.611 0.572 1.023
Jonl 24 0990 —1.819 —1.468 0.048 1489 2.093 1.087 0.765
lonJ 24 099 —2.155 —1.557 0.096 1.803 2.328 1.404 0.765 1.292
Jonl 60 0.000 —1.554 —1.242 0.027 1304 1.641 0.089 0.091
lonJ 60 0.000 —1.899 —1.448 0.005 1417 1.769 0.111 0.091 1.247
Jonl 60 0950 —1.48% —1.131 —0.008 1214 1.595 2.140 2.447
fonJ 60 0950 —1831 —1329 0.109 1.497 1.987 3.323 2.447 1.553
Jonl 60 0.990 —1945 —1.460 —0.025 1426 1.921 6.115 4.506
lonJ 60 0990 —2232 —1695 —0.031 1699 2379 9.586 4.506 1.568
Jonl 120 0.000 —1414 —1.047 0.013  1.099 1.503 0.154 0.200
lonJ 120 0.000 -2.077 —1528 —0.054 1.398 1.308 0.302 0.200 1.967
Jonl 120 0950 —1473 —1.149 —0.012 1.126 1462 5.318 6.536

lonJ 120 0950 -—2218 —1.620 0.068 1.607 2.172 12.285 6.536 2310
Jonl 120 0990 —1736 —1351 -—0.012 1262 1.652 17.805 16.680
lonJ 120 0990 —2841 —1959 —0.009 2.138 2912 56.715 16.680  3.185

Jonl 240 0.000 —1250 —0953 -0.004 0867 1.123 0.288 0.500
lonJ 240 0.000 —2.856 —2.039 —0062 1933 2.624 1.438 0.500  4.991
Jonl 240 0950 —1.181 -0.895 —0.013 0.890 1.275 9.891 17.917
lonJ 240 0950 —3.177 —2.164 0.107 2324 3.215 71.595 17.917 7.239
Jonl 240 0990 —1346 —1.013 —0.016 1.015 1.320 40.642 61.947
lonJ 240 0.990 —4.420 —2.646 0.031 2.764 3.841 416.605 61.947 10.251

Jonl 360 0.000 —0.887 —0.603 —0.000 0.697 0917 0.311 1.000
lonJ 360 0.000 -—3711 —2.681 0.091 2.634 3.859 5.632 1.000  18.107
Jonl 360 0950 —0.863 —0.642 0.030 0.662 00916 10900  36.889
lonJ 360 0950 —4403 —3.110 —0.003 3.009 4388 271420 36889 24.901
Jonl 360 0990 —0901 —0.654 —0.031 0640 0.835 40.057 145.476
lonJ 360 0990 -6.199 —3.890 0.025 4.082 6.236 2530.852 145476 63.181

The table provides a comparison of the relative efficiency of long-horizon regression coefficients estimated two different
ways: (i) a regression of J-period returns on a single-period X, (denote J on 1), and (ii) a regression of single-period returns
on a J-period sum of X, (denote 1 on J). The results are simulated using 1000 replications of 720 observations on an i.i.d.
return process and an AR(1) process on X, (with corresponding AR(1) parameter p). The table provides both the empirical
distribution of the regression coefficients and also the ratio of the simulated variances of the coefficients. Note that the
estimators are equivalent in large samples in every respect, including their asymptotic distribution. The table has adjusted
their small-sample distributions by their true asymptotic variance to approximate the implied standard normal distribution of
the estimators.
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theories to the null hypothesis; e.g., see Campbell 1993b). Unfortunately, there is no cure
for the poor efficiency of the alternative estimator, ,851. Its problem derives from having to
estimate the multiperiod variance of X,, which is the estimator’s central feature.

3.3 A Comparison of Long-Horizon versus Short-Horizon Regressions

An alternative approach to estimating coefficients from long-horizon regressions is to
derive implied long-horizon coefficients from short-horizon regressions. This approach has
been adopted by Campbell and Shiller (1987), Kandel and Stambaugh (1988), Campbell
(1993a), Hodrick (1992), and Bekaert and Hodrick (1992), among others. The intuition
underlying their estimation approach is straightforward. It is based on the fact that estimat-
ing short-horizon systems is generally more efficient than estimating long-horizon systems.
Thus, using these more efficient short-horizon estimators to estimate long-horizon coeffi-
cients should also be more efficient. Below, we quantify this efficiency gain in the context
of the statistical setting used in this paper.

For purposes of illustration, consider the regression system

(3.7) R, =a +B/X, + € (1),

(3.8) X,y =0+ pX, + 7,4

Under these assumptions, it is possible to derive an implied counterpart to the regression
coefficient 8 estimated in regressions (2.1), (3. 1) and (3.4). In particular, denote the OLS
regression coefficients from (3.7) and (3.8) as B , and p. The implied consistent estimator
of B, as a function of the two one-period estimators ( ,81, and p), denoted ,B‘mP can be
written as

(3.9) Bimp = j3,

The GMM procedure described in Section 3.1 can be used to estimate the variance of
this estimator. Specifically, under the null hypothesis 8, = 0, it is possible to show that

)
5 2
Al os (1 — pJ
3.10 : mpy = — .
( ) var(,BJ ) U;?;(l —p)

Similar to the comparison given in Section 3.1, we can look at the relative asymptotic
efficiency of the estimators, ﬁ?‘”, BOI and Bijmp. Consistent with intuition, the short-
horizon coefficient is always more efficient. However, this efficiency gets drastically re-
duced for highly autocorrelated X,.

Table 3.1B provides calculations of the ratio of asymptotic variances given in (3.3) and
(3.10) for a variety of J and p. In particular, we vary p over the range (0, .5, .9, .95, .99)
and J over the range (2, 12, 24, 60, 120). As an example, consider the estimator’s relative
efﬁciency for p = 0 versus p = .99. Recall that for p = 0, the ratios of the variances of

30l and B9 are 2, 12, 24, 60, and 120 when J equals 2, 12, 24, 60, and 120 respectively.
When comparing ,8“0‘ to ,B‘mp the ratio increases to 4, 144 576, 3600, and 14400 respec-
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tively. That is, consider using 720 monthly observations to forecast five-year returns. For
this case in which the forecasting variable, X,, is uncorrelated through time, then the im-
plied long-horizon approach would be as efficient as a nonoverlapping regression which
uses 43,200 five-year independent observations, or roughly 216,000 years of data!

In contrast, for p = .99, recall that the ratios of the variances of ,é;“’l and B;’l are 1.02,
1.04, 1.14, 1.30, and 2.72 when J equals 2, 12, 24, 60, and 120 respectively. When com-
paring B‘}Ol to Bijmp, the ratio increases to only 1.03, 1.11, 1.32, 1.89, and 5.55 respectively.
That is, in the above example, the implied long-horizon approach would be as efficient as
a nonoverlapping regression which uses 23 five-year independent observations, or a little
less than twice the initial data. At least in terms of this example, the implied long-horizon
approach seems preferable to the more standard long-horizon regression. Nevertheless, the
overall conclusion from Table 3.1B is that, for highly autocorrelated regressors, the gains
above and beyond the nonoverlapping method are relatively small.

These analytical results given in Table 3.1B are strictly valid only asymptotically. It
seems worthwhile exploring whether the intuition carries through to small samples. Using
the Monte Carlo simulation described in Section 2, we compare the small sample variances
and Monte Carlo empirical distribution of 41°!, 39!, and Bi™P. In particular, to coincide
with existing studies, we choose the number of observations T equal to 720; the level of
the autocorrelation parameter p to vary over the range (0, .5, .9, .95, .99); and the horizon
length J to vary over the range (2, 12, 24, 60, 120). The results for these simulations are
provided in Table 3.2B.

Several features of the simulation evidence in Table 3.2B are especially interesting.
First, the small sample simulation results are similar in spirit to the analytical results in
Table 3.1B. For example, the relative efficiency of the short-horizon method increases with
the horizon length J, but declines rapidly for large p. The magnitudes are also consistent
with those in Table 3.1B. Second, the short-horizon approach is for the most part more
efficient than the long-horizon regression methods. For example, in every simulation, the
ratios of var( B?l) and var( B’}Ol) to var( B}mp) are greater than one. Third, this efficiency,
however, is greatly reduced for highly autocorrelated regressors. For instance, consider
setting the horizon length J equal to 60. In this case, the ratios of var( ,é;’l) and var( B;Ol)
to the implied long-horizon estimator’s variance are, respectively, 61.9, 38.3, 9.5, 5.0, and
1.9 and 4340.2, 1079.1, 42.8, 14.7, and 2.5 for p equal to 0, .5, .9, .95, and .99.

Since we know that the regressors tend to be highly autocorrelated, and that a regression
with large J provides very few independent observations (e.g., see Section 3.1), this sug-
gests that the short-horizon approach, even with its enhanced efficiency, is not a solution to
the long-horizon regression problem.

This can be further illustrated by recognizing that there is a potential cost to using the
short-horizon approach for inferring long-horizon coefficients. Suppose the true process on
X, 1s not an AR(1), but instead an AR(2); i.e.,

Xppp = 0 + 51Xr + 82Xt~1 + 7,

Under this alternative model for X, it is possible to show that the implied long-horizon
coefficient estimator converges to

(1 — 8, — &)

(3.11) plim (Bimp) = g, a
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Clearly, if B; # 0 (i.e., the alternative is true), then ,BAiJmP will not be a consistent estimator
for the true long-horizon coefficient ,Bj’l. To see this, note that in general

J-1

(3.12) Bol = Bil1 + ; corr(X,, X, I,

where corr(-) denotes the correlation between two variables. However, in the AR(2) ex-
ample, the jth-order autocorrelations of X, are given by corr(X,, X, ;) = §;/(1 — 85),
corr(X,, X, 5) = 8, + 67/(1 — 8,), and so on. If 52 # 0, then there is no way for (3.11)
and (3.12) to coincide; that is, phm(,B mp phm(,B

In contrast, the long-horizon regression coefficient ,801 is always a consistent estimator
for B, under both the null 8; = 0 and alternative hypotheses B, # 0. This condition is
especially important because financial economists would like to interpret the predictability
if it shows up in the data. Thus, if we are to interpret the point estimates of the coefficient
B, in any meaningful way, consistency seems like a minimum criterion. If we use the short-
horizon approach, however, consistency is lost if the autoregression is underspecified.

A possible solution to this consistency problem is to overspecify the autoregressive
structure of the forecasting variable, X,. While this does not pose a problem asymptotically
under the null 8, = 0, it 1s concelvable that overfitting could lead to difficulties in small
samples. As a check, we performed some Monte Carlo tests in a simple overﬁttmg example.
Specifically, we treated the X, as an AR(2), and calculated the implied ,8 mp ysing simulated
data in which X, follows an AR( 1). For this particular example, overfitting had no effect on
the results.”

4. RELATED WORK AND FUTURE RESEARCH

This paper takes as given the long-horizon regression problem. It is worthwhile com-
menting on the motivation for using long-horizon regressions in studying the predictability
of stock returns. From an economic point of view, there is general interest in the magnitude
of long-horizon coefficients, and long-horizon regressions can be justified from that per-
spective. From a purely statistical point of view, Campbell (1993b) argues that long-
horizon regressions may be more powerful than a single-horizon regression even if the
system is completely specified as in Section 2 (see also Cochrane 1991a). This claim seems
to be at odds with standard econometric theory, which would imply one can do no better
than the system of equations described in (3.7) and (3.8). Stock (1992) provides a response
to an earlier version of Campbell’s paper, and argues that this increased power is just an
anomaly of highly autoregressive predetermined variables. Furthermore, in terms of prac-
tical use, he argues that the size of long-horizon tests are so poor that these anomalies
cannot be taken advantage of in actual applications of the data. Campbell (1993b) performs
some Monte Carlo simulations, which leaves the debate open.

While this literature is still developing, an intriguing argument for long-horizon regres-
sions has been given by Stambaugh (1993). Stambaugh suggests that violations of OLS,
such as heteroskedasticity, can make long-horizon regressions more effective. Specifically,
in a simple GARCH framework, Stambaugh reports efficiency gains by going to a long-

9Tt should be pointed out that, in practice, substantial overspecification of the AR process could have an effect
in small samples (see Box and Jenkins 1976). Thus, the econometrician needs to treat each estimation problem
on a case-by-case basis.
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horizon setting. Stambaugh’s work suggests that long-horizon regressions will remain im-
portant in financial applications.

With respect to the impact of heteroskedasticity on the efficiency of the various proce-
dures for estimating 3,, Stambaugh (1993) finds that the presence of heteroskedasticity
leads to even greater relative efficiency of the overlapping to the nonoverlapping case.
Although the increase tends to be small, it is magnified for highly autocorrelated predeter-
mined variables, as well as persistent variances of returns (both of which are applicable to
financial data). Of more interest, in his heteroskedasticity-consistent framework, Stam-
baugh shows that the implied long-horizon approach may actually be less efficient than the
long-horizon regression method, a reversal of the results reported in this paper. This sug-
gests that researchers should be especially aware of the distributional structure of the asset
returns they are forecasting.

Note that the results in this paper have also been derived under the null hypothesis of no
predictability. Stambaugh (1993) finds that the gains in efficiency over the nonoverlapping
approach are slightly magnified for nonzero B alternatives. In contrast, Campbell (1993b)
reports much larger gains than under the null 8, = 0. This is a result of his specification of
how expected returns evolve through time. In general though, the results in these papers
coincide with the basic finding here that the persistence of X, is the most important factor
determining the efficiency of the various long-horizon regression methods.

On a more negative note, for large J, it makes little sense to use long-horizon regressions
with nonoverlapping observations. For example, with 60 years of data, five-year return
regressions leave the econometrician with only 12 observations. Unfortunately, for the case
of highly autocorrelated predetermined variables, the results in this paper imply that the
other estimation approaches are not reasonable alternative procedures. This result regarding
the efficiency loss due to correlation may be endemic of many other applications in finance.
A recent paper by Graham (1993) quantifies this loss and justifies the importance of cor-
relation as a tool in understanding the relation between information content and the number
of data observations.
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