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1. Introduction 

When one sees so many co-authors on a single chapter and they are not from the 
hard sciences, the natural question is why? Looking at both the number and qual­
ity of contributors to this volume and how much econometric talent Rob Engle has 
helped nurture through his career, it becomes quite clear that the only way we could 
participate in Rob's Festschrift is to pool our limited abilities in Financial Economet­
rics. Given Rob's obvious importance to econometrics, and in particular to finance via 
his seminal work on volatility, it is quite humbling to be asked to contribute to this 
volume. 

Looking over Rob's career, it is clear how deeply rooted the finance field is in Rob's 
work. When one thinks of the major empirical papers in the area of fixed income, Fama 
and Bliss (1987), Campbell and Shiller (1991), Litterman and Scheinkman (1991), Chan, 
Karolyi, Longstaff and Sanders (1992), Longstaff and Schwartz (1992), Pearson and Sun 
(1994), Ait-Sahalia (1996b) and Dai and Singleton (2000) come to mind. Yet in terms 
of citations, all of these papers are dominated by Rob's 1987 paper with David Lilien 
and Russell Robins, "Estimating Time Varying Risk Premia in the Term Structure: 
The ARCH-M Model." In this chapter, further expanded upon in Engle and Ng (1993), 

Acknowledgments: We would like to thank Tim Bollerslev, John Cochrane, Lars Hansen, Chester Spatt, 
an anonymous referee and seminar participants at the Engle Festschrift conference, New York Federal 
Reserve, the Federal Reserve Board, Goldman Sachs, University of North Carolina, U.C. Berkeley, ITAM, 
the San Diego meetings of the Western Finance Association, the Utah Winter Finance Conference, and 
the NBER asset pricing program for helpful comments. 
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the authors present evidence that the yield curve is upward sloping when interest rate 
volatility is high via an ARCH-M effect on term premia. The result is quite natural to 
anyone who teaches fixed income and tries to relate the tendency for the term structure 
to be upward sloping to the duration of the underlying bonds. Given this work by Rob, 
our contribution to this Festschrift is to explore the relation between volatility and the 
term structure more closely. 

It is now widely believed that interest rates are affected by multiple factors.l Never­
theless, most of our intuition concerning bond and fixed-income derivative pricing comes 
from stylized facts generated by single-factor, continuous-time interest rate models. For 
example, the finance literature is uniform in its view that interest rate volatility is increas­
ing in interest rate levels, though there is some disagreement about the rate of increase 
(see, for example, Chan, Karolyi, Longstaff and Sanders, 1992; Ait-Sahalia, 1996b; Con­
ley, Hansen, Luttmer and Scheinkman, 1995; Brenner, Harjes and Kroner, 1996; and 
Stanton, 1997). If interest rates possess multiple factors such as the level and slope of 
the term structure (Litterman and Scheinkman, 1991), and given the Engle, Lilien and 
Robins (1987) finding, then this volatility result represents an average over all possible 
term structure slopes. Therefore, conditional on any particular slope, volatility may be 
severely misestimated, with serious consequences especially for fixed-income derivative 
pricing. 

Two issues arise in trying to generate stylized facts about the underlying continuous­
time, stochastic process for interest rates. First, how do we specify ex ante the drift and 
diffusion of the multivariate process for interest rates so that it is consistent with the true 
process underlying the data? Second, given that we do not have access to continuous­
time data, but instead to interest rates/bond prices at discretely sampled intervals, how 
can we consistently infer an underlying continuous-time multivariate process from these 
data? In single-factor settings, there has been much headway at addressing these issues 
(see, for example, Ait-Sahalia, 1996a, 2007; Conley, Hansen, Luttmer and Scheinkman, 
1995; and Stanton, 1997). Essentially, using variations on nonparametric estimators with 
carefully chosen moments, the underlying single-factor, continuous-time process can be 
backed out of interest rate data. 

Here, we extend the work of Stanton (1997) to a multivariate setting and provide for 
the non parametric estimation of the drift and volatility functions of multivariate stochas­
tic differential equations.2 Basically, we use Milshteins (1978) approximation schemes for 
writing expectations of functions of the sample path of stochastic differential equations 
in terms of the drift, volatility and correlation coefficients. If the expectations are known 
( or, in our case, estimated non parametrically) and the functions are chosen appropriately, 
then the approximations can be inverted to recover the drift, volatility and correlation 
coefficients. In this chapter, we apply this technique to the short- and long-end of the 
term structure for a general two-factor, continuous-time diffusion process for interest 

lSee, for example, Stambaugh (1988), Litterman and Scheinkman (1991), Longstaff and Schwartz 
(1992), Pearson and Sun (1994), Andersen and Lund (1997), Dai and Singleton (2000) and Collin­
Dufresne, Goldstein and Jones (2006) to name a few. This ignores the obvious theoretical reasons for 
multifactor pricing, as in Brennan and Schwartz (1979), Schaefer and Schwartz (1984), Heath, Jarrow 
and Morton (1992), Longstaff and Schwartz (1992), Chen and Scott (1992), Duffie and Kan (1996), Ahn, 
Dittmar and Gallant (2002) and Piazzesi (2005), among others. 

2 An exception is Ait-Sahalia (2008) and Ait-Sahalia and Kimmel (2007b) who provide closed form 
expansions for the log-likelihood function for a wide class of multivariate diffusions. 
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rates. Our methods can be viewed as a nonparametric alternative to the affine class 
of multifactor continuous-time interest rate models studied in Longstaff and Schwartz 
(1992), Duffie and Kan (1996), Dai and Singleton (2000) and Ait-Sahalia and Kimmel 
(2007b), the quadratic term structure class studied in Ahn, Dittmar and Gallant (2002), 
and the nonaffine parametric specifications of Andersen and Lund (1997). As an appli­
cation, we show directly how our model relates to the two-factor model of Longstaff and 
Schwartz (1992). 

Our chapter provides two contributions to the existing literature. First, in estimating 
this multifactor diffusion process, some new empirical facts emerge from the data. Of 
particular note, although the volatility of interest rates increases in the level of inter­
est rates, it does so primarily for sharply upward sloping term structures. Thus, the 
results of previous studies, suggesting an almost exponential relation between interest 
rate volatility and levels, are due to the term structure on average being upward sloping, 
and is not a general result per se. Moreover, our volatility result holds for both the short­
and long-term rates of interest. Thus, conditional on particular values of the two factors, 
such as a high short rate of interest and a negative slope of the term structure, the term 
structure of interest rate volatilities is generally at a lower level across maturities than 
implied by previous work. 

The second contribution is methodological. In this chapter, we provide a way of 
linking empirical facts and continuous-time modeling techniques so that generating 
implications for fixed-income pricing is straightforward. Specifically, we use nonparamet­
rically estimated conditional moments of "relevant pricing factors" to build a multifactor 
continuous-time diffusion process, which can be used to price securities. This process can 
be considered a generalization of the Longstaff and Schwartz (1992) two-factor model. 
Using this estimated process, we then show how to value fixed-income securities, in con­
junction with an estimation procedure for the functional for the market prices of risk. 
As the analysis is performed nonparametrically without any priors on the underlying 
economic structure, the method provides a unique opportunity to study the economic 
structure's implications for pricing. Of course, ignoring the last 25 years of term structure 
theory and placing more reliance on empirical estimation, with its inevitable estimation 
error, may not be a viable alternative on its own. Nevertheless, we view this approach as 
helpful for understanding the relation between interest rate modeling and fixed-income 
pricing. 

2. The stochastic behavior of interest rates: Some 
evidence 

In this section, we provide some preliminary evidence for the behavior of interest rates 
across various points of the yield curve. Under the assumption that there are two interest­
rate dependent state variables, and that these variables are spanned by the short rate 
of interest and the slope of the term structure, we document conditional means and 
volatilities of changes in the six-month through five-year rates of interest. The results are 
generated nonparametrically, and thus impose no structure on the underlying functional 
forms for the term structure of interest rates. 

• 



,ZatiZity 

2 class 
J.wartz 
.immel 
2002), 
appli-

tff and 

nating 
tao Of 
inter­

.8, the 
Iterest 
oping, 
short­
tctors, 
~ term 
, than 

yay of 
rating 
amet­
factor 
ss can 
nodel. 
1 con­
frisk. 
dying 
nomic 
lcture 
lation 
1ch as 
lcome 

rates 
2rest­
; rate 
3 and 
cs are 
ional 

2 The stochastic behavior of interest rates: Some evidence 299 

2.1. Data description 

Daily values for constant maturity Treasury yields on the three-year, five-year and 
lO-year US government bond were collected from Datastream over the period January 
1983 to December 2006. In addition, three-month, six-month and one-year T-bill rates 
were obtained from the same source, and converted to annualized yields. This provides 
us with over 6,000 daily observations. 

The post-1982 period was chosen because there is considerable evidence that 
the period prior to 1983 came from a different regime (see, for example, Huizinga 
and Mishkin, 1986; Sanders and Unal, 1988; Klemkosky and Pilotte, 1992; and 
Torous and Ball, 1995). In particular, these researchers argue that the October 
1979 change in Federal Reserve operating policy led to a once-and-for-all shift in the 
behavior of the short-term riskless rate. As the Federal Reserve experiment ended 
in November 1982, it is fairly standard to treat only the post-late-1982 period as 
stationary. 

In estimating the conditional distribution of the term structure of interest rates, we 
employ two conditioning factors. These factors are the short rate of interest - defined 
here as the three-month yield - and the slope of the term structure - defined as the spread 
between the 10-year and three-month yields. These variables are chosen to coincide with 
interest rate variables used in other studies (see Litterman and Scheinkman, 1991; and 
Chan, Karolyi, Longstaff and Sanders, 1992, among others). Figure 14.1 graphs the time 

Short Rate --
Slope ....... . 

84 86 88 90 92 94 96 98 00 02 04 06 

Year 

Fig. 14.1. Time series plot of the three-month rate and term structure slope (i.e., the 
spread between the 10-year and three-month rate) over the 1983-2006 period 
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Fig. 14.2. Scatter plot of the three-month rate versus the term structure slope over 
the 1983-2006 period 

series of both the short rate and slope. Over the 1983-2006 period, the short rate ranges 
from 1% to 11%, whereas the slope varies from -1% to 4%. There are several distinct 
periods of low and high interest rates, as well as slope ranges. As the correlation between 
the short rate and slope is -0.31, there exists the potential for the two variables combined 
to possess information in addition to a single factor. 

Figure 14.2 presents a scatter plot of the short rate and term structure slope. Of 
particular importance to estimating the conditional distribution of interest rates is the 
availability of the conditioning data. Figure 14.2 shows that there are two holes in the 
data ranges, namely at low short rates (Le., from 1% to 4%) and low slopes (Le., from 
-1% to 2%), and at high short rates (Le., from 9.5% to 11.5%) and low slopes (Le., 
from -1 % to 1%). This means that the researcher should be cautious in interpreting the 
implied distribution of interest rates conditional on these values for the short rate and 
slope. 

2.2. The conditional distribution of interest rates: A first look 

In order to understand the stochastic properties of interest rates, consider conditioning 
the data on four possible states: (i) high level (Le., of the short rate)/high slope, (ii) high 
level/low slope, (ii) low level/low slope, and (iv) low level/high slope. In a generalized 
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method of moments framework, the moment conditions are:3 

(.6.iT,t+ 1 - Jihr:hJ x It,hr:hs 

(.6.iT,t+l-P:hr:ls) x It,hr:ls 

(.6.iT,t+ 1 - J-llr:ls) x It,lr:ls 

(.6.iT,t+l - J-llr:hs) X It,lr:hs 

E [ (.6. 'T T) 2 T 2 X It,hr:hs 
= 0, (1) 

'tt,t+l - J-lhr:hs - O"hr:hs 

[ ( .6. 'T T) 2 T 2 X It,hr:ls 'tt,t+l - J-lhr:ls - (J" hr:ls 

[(.6.'T T)2 T 2 X It,lr:ls 1,t,t+l - J-llr:l s - O"lr:ls 

[ ( .6. 'T T) 2 T 2 X It,lr:hs 'tt,t+l - J-llr:hs - O"lr:hs 

where .6.iT,t+l is the change in the T-period interest rate from t to t + 1, J-l~, is the mean 
change in rates conditional on one of the four states occurring, (J"~, is the volatility of the 
change in rates conditional on these states, and I t ,\, = 1 if [,1,] occurs, zero otherwise. 
These moments, J-lT and (J"T, thus represent coarse estimates of the underlying conditional 
moments of the distribution of interest rates. 

These moment conditions allow us to test a variety of restrictions. First, are 
(J"hr:hs = O"hr:ls and O"lr:hs = (J"lr:ls? That is, does the slope of the term structure 
help explain volatility at various interest rate levels? Second, similarly, with respect 
to the mean, are J-lhr:hs = J-lhr:ls and J-llr:hs = J-llr:ls? Table 14.1 provides estimates 
of J-l~, and (J"~" and the corresponding test statistics. Note that the framework allows 
for autocorrelation and heteroskedasticity in the underlying squared interest rate series 
when calculating the variance-covariance matrix of the estimates. Further, the cross­
correlation between the volatility estimates is taken into account in deriving the test 
statistics. 

Several facts emerge from Table 14.1. First, as documented by others (e.g., Chan, 
Karolyi, Longstaff and Sanders, 1992; and A'it-Sahalia, 1996a), interest rate volatility is 
increasing in the short rate of interest. Of some interest here, this result holds across 
the yield curve. That is, conditional on either a low or high slope, volatility is higher 
for the six-month, one-year, three-year and five-year rates at higher levels of the short 
rate. Second, the slope also plays an important role in determining interest rate volatil­
ity. In particular, at high levels of interest rates, the volatility of interest rates across 
maturities is much higher at steeper slopes. For example, the six-month and five-year 
volatilities rise from 5.25 and 6.35 to 7.65 and 7.75 basis points, respectively. Formal 
tests of the hypothesis O"hr:hs = (J"hr:ls provide 1% level rejections at each of the maturi­
ties. There is some evidence in the literature that expected returns on bonds are higher 
for steeper term structures (see, for example, Fama, 1986, and Boudoukh, Richardson, 
Smith and Whitelaw, 1999a, 1999b); these papers and the finding of Engle, Lilien and 
Robins (1987) may provide a link to the volatility result here. Third, the effect of the 
slope is most important at high interest rate levels. At low short rate levels, though the 

3We define a low (high) level or slope as one that lies below (above) its unconditional mean, Here, 
this mean is being treated as a known constant, though, of course, it is estimated via the data, 
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Table 14.1. Conditional moments of daily interest rate changes (basis points) 

Probability HR,HS HR,LS 2 
XHR,HS=HR,LS LR,HS LR,LS 2 

XLR,H S=LR,LS 

22.76% 26.83% 27.45% 22.96% 

Mean (bpjday) 
Six-month 0.032 -0.292 1.747 0.031 0.056 0.033 
(s.e.)j[p value] (0.207) (0.131) [0.186] (0.092) (0.108) [0.857] 
One-year 0.032 -0.365 2.339 0.060 0.069 0.003 
(s.e.)j[p value] (0.215) (0.147) [0.126] (0.120) (0.119) [0.957] 
Three-year 0.032 -0.365 1.462 0.063 0.082 0.007 
(s.e.)j[p value] (0.211) (0.158) [0.227] (0.167) (0.149) [0.932] 
Five-year -0.070 -0.371 1.304 0.017 0.110 0.170 
(s.e.)j[p value] (0.210) (0.158) [0.254] (0.167) (0.149) [0.680] 

Volatility (bpjday) 
Six-month 7.645 5.248 35.314 3.715 4.006 0.862 
(s.e.)j[p value] (0.364) (0.165) [0.000] (0.163) (0.265) [0.353] 
One-year 7.928 5.869 24.452 4.879 4.428 2.024 
(s.e.)j[p value] (0.367) (0.187) [0.000] (0.168) (0.266) [0.155] 
Three-year 7.928 5.869 13.564 6.784 5.520 18.173 
(s.e.)j[p value] (0.341) (0.187) [0.000] (0.180) (0.229) [0.000] 
Five-year 7.746 6.347 13.567 6.761 5.571 20.389 
(s.e.)j[p value] (0.329) (0.179) [0.000] (0.180) (0.229) [0.000] 

Average correlation 
0.840 0.823 0.807 0.796 

The table presents summary statistics for daily changes in the six-month, one-year, three-year, and five­
year yields on US government securities over the 1983-2006 period. Specifically, the table provides the 
mean, volatility, and cross-correlation of these series, conditional on whether the level of the short rate 
and slope of the term structure are either low or high (and the associated standard errors). These states 
of the world are labeled HR and LR for high and low short rates, respectively, and HS and LS for high 
and low slopes, respectively, and they occur with the probabilities given in the first row of the table. A 
Wald test that the conditional moments are equal (and the associated p value), holding the short rate 
state fixed but varying the state for the slope of the term structure, is also provided for the mean and 
volatility of these series. 

volatility at low slopes is less than that at high slopes, the effect is much less pronounced. 
This is confirmed by the fact that a number of the p values are no longer significant 
at conventional levels for the test of the hypothesis, CJlr:hs = CJ1r:ls ' Fourth, the con­
ditional means, though not in general reliably estimated, are consistent with existing 
results in the literature (e.g., Chan, Karolyi, Longstaff and Sanders, 1992; Ait-Sahalia, 
1996a; and Stanton, 1997). That is, at low levels of interest rates, the mean tends to 
be greater than at high interest rates, which can be explained by mean reversion. How­
ever, the table also provides an interesting new result, namely that the effect of the 
slope is of higher magnitude than the level. Further, low slopes tend to be associated 
with negative changes in rates, whereas high slopes are linked to positive interest rate 
changes. 
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2.3. The conditional distribution of interest rates: A closer look 

In order to generalize the results of Section 2.2, we employ a kernel estimation pro­
cedure for estimating the relation between interest rate changes and components of 
the term-structure of interest rates. Kernel estimation is a nonparametric method for 
estimating the joint density of a set of random variables. Specifically, given a time 
series Lli[,t+l' ir and i~ (where i r is the level of interest rates, and is is the slope), 
generated from an unknown density f(Lli 7

, ir , is), then a kernel estimator of this 
density is 

(2) 

where K ( .) is a suitable kernel function and h is the window width or smoothing 
parameter . 

We employ the commonly used independent multivariate normal kernel for K(-). The 
other parameter, the window width, is chosen based on the dispersion of the observations . 
For the independent multivariate normal kernel, Scott (1992) suggests the window width, 

where (;-i is the standard deviation estimate of each variable Zi, T is the number of 
observations, m is the dimension of the variables, and k is a scaling constant often 
chosen via cross-validation. Here, we employ a cross-validation procedure to find the 
k that provides the right trade-off between the bias and variance of the errors. Across 
all the data points, we find the ks that minimize the mean-squared error between the 
observed data and the estimated conditional data. This mean-squared error minimization 
is implemented using a Jackknife-based procedure. In particular, the various implied 
conditional moments at each data point are estimated using the entire sample, except 
for the actual data point and its nearest neighbors.4 Once the k is chosen, the actual 
estimation of the conditional distribution of interest rates involves the entire sample, 
albeit using window widths chosen from partial samples. To coincide with Section 2.2., 
we focus on the first two conditional moments of the distribution, and it is possible to 
show that 

T 

A (.r 'S) '" ('r 'S);\'7 l-".6.i T 2 ,2 = ~ Wt 2 ,2 Ll'/,t (3) 
t=l 

(4) 

-lDue to the serial dependence of the data, we performed the cross-validation omitting 100 observations, 
i.e., four months in either direction of the particular data point in question. Depending on the moments 
in question, the optimal ks range from roughly 1.7 to 27.6, which implies approximately twice to 28 
times the smoothing parameter of Scott's asymptotically optimal implied value. 
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Volatility (bp/day) (One year) 
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Fig. 14.3. The volatility of the daily change in the one-year yield (in basis points), 
conditional on the short rate and the slope of term structure 

where WtW', is) = K (W,iS)~(i; ,it)) / 'L'[=1 K «ir'iS)~(i~'it)). The weights, Wt(iT, is), 

are determined by how close the chosen state, i.e., the particular values of the level 
and slope, iT and is, is to the observed level and slope of the term structure, ir 
and i:. 

As an illustration, using equation (4), Figure 14.3 provides estimates of the volatility 
of daily changes in the one-year rate, conditional on the current level of the short rate 
and the slope of the term structure (Le., ir and in. Although Figure 14.3 represents 
only the one-year rate, the same effects carry through to the rest of the yield curve and 
have therefore been omitted for purposes of space. The figure maps these estimates to 
the relevant range of the data, in particular, for short rates ranging from 3% to 11% 
and slopes ranging from 0.0% to 3.5%. That said, from Figure 14.2, the data are quite 
sparse in the joint region of very low rates and low slopes, and thus results must be 
treated with caution in this range. The main result is that the volatility is maximized at 
high interest rate levels and high slopes though the more dramatic changes occur at high 
slopes. 

To see this a little more clearly, Figures 14.4 and 14.5 present cut-throughs of 
Figure 14.3 across the term structure at short rates of 8.0% and 5.5%, respectively. 
From Figure 14.2, these levels represent data ranges in which there are many differ­
ent slopes; thus, conditional on these levels, the estimated relation between the volatility 
of the six-month, one-year, three-year and five-year rates as a function of the slope 
is more reliable. Several observations are in order. First, as seen from the figures, 
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Fig. 14.4. The volatility of the daily change in yields versus the slope, with the short 
rate fixed at 8% 
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Fig. 14.5. The volatility of the daily change in yields versus the slope, with the short 
rate fixed at 5.5% 
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Fig. 14.6. The volatility of the daily change in yields versus the short rate, with the 
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volatility is increasing in the slope for all maturities, though primarily only for steep 
term structures, i.e., above 2.0%. Second, volatility is also higher at greater magni­
tudes of the short rate albeit less noticeably. These results suggest that any valuation 
requiring a volatility estimate of interest rates should be done with caution. For exam­
ple, estimating volatility when the term structure is flat relative to upward sloping 
should lead to quite different point estimates. Third, the relation between volatility 
and the slope is nonlinear, which, as it turns out in Section 4, will lead to a nonlin­
ear continuous-time diffusion process. This feature can be potentially important as the 
majority of the multifactor, term structure pricing models are derived from the affine 
class. 

Alternatively, Figures 14.6 and 14.7 provide cut-throughs of Figure 14.3 across the 
term structure at slopes of 2.75% and 1.00%, respectively. These slopes represent data 
ranges in which there are a number of observations of the interest rate level. The figures 
show that the estimated relation between the volatility of the six-month, one-year, and 
especially the three-year and five-year rates as a function of the level depends consid­
erably on the slope of the term structure. For example, the volatility of the six-month 
and one-year interest rate changes is almost fiat over levels of 3.0% to 6.0% at low 
slopes, whereas it increases roughly 200 basis points at high slopes. Similarly, even at 
the long end of the yield curve, the increase in volatility is higher at high versus low 
slopes. 
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Fig. 14.7. The volatility of the daily change in yields versus the short rate, with the 
slope fixed at 1% 

3. Estimation of a continuous-time multifactor 
diffusion process 

The results of Section 2 suggest that the volatility of changes in the term structure of 
interest rates depends on at least two factors. Given the importance of continuous-time 
mathematics in the fixed income area, the question arises as to how these results can be 
interpreted in a continuous-time setting. Using data on bond prices, and explicit theo­
retical pricing models (e.g., Cox, Ingersoll and Ross, 1985), Brown and Dybvig (1986), 
Pearson and Sun (1994), Gibbons and Ramaswamy (1993) and Dai and Singleton (2000) 
all estimate parameters of the underlying interest rate process in a fashion consistent with 
the underlying continuous-time model. These procedures limit themselves, however, to 
fairly simple specifications. 

As a result, a literature emerged which allows estimation and inference of fairly 
general continuous-time diffusion processes using discretely sampled data. Ait-Sahalia 
(2007) provides a survey of this literature and we provide a quick review here. First, 
at a parametric level, there has been considerable effort in the finance literature at 
working through maximum likelihood applications of continuous-time processes with 
discretely sampled data, starting with Lo (1988) and continuing more recently with 
Ait-Sahalia (2002) and Ait-Sahalia and Kimmel (2007a, 2007b). Second, by employ­
ing the infinitesimal generators of the underlying continuous-time diffusion processes, 
Hansen and Scheinkman (1995) and Conley, Hansen, Luttmer and Scheinkman (1995) 
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construct moment conditions that also make the investigation of continuous-time mod­
els possible with discrete time data. Third, in a nonparametric framework, Ait-Sahalia 
(1996a, 1996b) develops a procedure for estimating the underlying process for interest 
rates using discrete data by choosing a model for the drift of interest rates and then 
non parametrically estimating its diffusion function. Finally, as an alternative method, 
Stanton (1997) employs approximations to the true drift and diffusion of the underly­
ing process, and then nonparametrically estimates these approximation terms to back 
out the continuous-time process (see also Bandi, 2002; Chapman and Pearson, 2000; 
and Pritsker, 1998). The advantage of this approach is twofold: (i) similar to the 
other procedures, the data need only be observed at discrete time intervals, and (ii) 
the drift and diffusion are unspecified, and thus may be highly nonlinear in the state 
variable. 

In this section, we extend the work of Stanton (1997) to a multivariate setting and 
provide for the nonparametric estimation of the drift and volatility functions of multi­
variate stochastic differential equations. Similar to Stanton (1997), we use Milshtein's 
(1978) approximation schemes for writing expectations of functions of the sample path 
of stochastic differential equations in terms of the drift and volatility coefficients. If 
the expectations are known (albeit estimated nonparametrically in this paper) and the 
functions are chosen appropriately, then the approximations can be inverted to recover 
the drift and volatility coefficients. We have performed an extensive simulation analysis 
(not shown here) to better understand the properties of the estimators. Not surprisingly, 
the standard errors around the estimators, as well as the properties of the goodness of 
fit, deteriorate as the data becomes more sparse. Given the aforementioned literature 
that looks at univariate properties of interest rates, it is important to point out that 
these properties suffer more in the multivariate setting as we introduce more "Star trek" 
regions of the data with the increasing dimensionality of the system. Nevertheless, this 
point aside, the approximation results here for the continuous-time process carry through 
to those presented in Stanton (1997), in particular, the first order approximation works 
well at daily to weekly horizons, while higher order approximations are required for less 
frequent sampling. 

3.1. Drift, diffusion and correlation approximations 

Assume that no arbitrage opportunities exist, and that bond prices are functions of two 
state variables, the values of which can always be inverted from the current level, Rt , 

and a second state variable, St. Assume that these variables follow the (jointly) Markov 
diffusion process 

dRt = f.1R(Rt , St) dt + CYR(Rt , St) dzf 

dSt = f.1s(Rt , St) dt + cys(Rt, St) dzf, 

(5) 

(6) 

where the drift, volatility and correlation coefficients (i.e., the correlation between ZR 
and ZS) all depend on Rt and St. Define the vector X t = (Rt, St). 

Q 
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Under suitable restrictions on M, (J, and a function f, we can write the conditional 
expectation E t [J(Xt+.d)] in the form of a Taylor series expansion,5 

1 2 2 
E t [J(Xt+.d)] = f(Xt ) + £f(Xt) 6. + 2£ f(Xt)6. + ... 

+ ~£n f(Xd6.n + O(6.n+1), 
n. 

(7) 

where £ is the infinitesimal generator of the multivariate process {Xd (see 0ksendal, 
1985; and Hansen and Scheinkman, 1995), defined by 

where 

Equation (7) can be used to construct numerical approximations to Etlf(Xt+.d)] 
in the form of a Taylor series expansion, given known functions MR, Ms, p, (JR and 
(JS (see, for example, Milshtein, 1978). Alternatively, given an appropriately chosen 
set of functions f(·) and nonparametric estimates of Edf(Xt+.d)], we can use equation 
(7) to construct approximations to the drift, volatility and correlation coefficients (i.e., 
M R, M s, p, (J Rand (J s) of the underlying multifactor, continuous-time diffusion pro­
cess. The nice feature of this method is that the functional forms for MR, Ms, p, (JR 
and (J S are quite general, and can be estimated nonparametrically from the underlying 
data. Rearranging equation (7), and using a time step of length i6.( i = 1,2, ... ), we 
obtain 

~. 1 
E~(Xt) == i6. Et [J(Xt+i.d) - f(Xt}] , 

= £f(Xt) + ~£2 f(Xt)(i6.) + ... + ~£n f(Xt)(i6.t-1 + O(6.n
). (8) 

2 n. 

From equation (8), each of the Ei is a first order approximation to £f, 

5For a discussion see, for example, Hille and Phillips (1957), Chapter 1l. Milshtein (1974, 1978) gives 
examples of conditions under which this expansion is valid, involving bounded ness of the functions /1, 17, 

f and their derivatives. There are some stationary processes for which this expansion does not hold for 
the functions f that we shall be considering, including processes such as 

dx = /1dt + x 3 dZ, 

which exhibit "volatility induced stationary" (see Conley, Hansen, Luttmer and Scheinkman, 1995). 
However, any process for which the first order Taylor series expansion fails to hold (for linear f) will 
also fail if we try to use the usual numerical simulation methods (e.g. Euler discretization). This severely 
limits their usefulness in practice. 
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N ow consider forming linear combinations of these approximations, "L:[: 1 aJEi (Xt ). That 
is, from equation (8), 

(9) 

Can we choose the ai so that this linear combination is an approximation to £ j of 
order N? 

For the combination to be an approximation to £j, we require first that the weights 
aI, a2,"" aN sum to 1. Furthermore, from equation (9), in order to eliminate the first 
order error term, the weights must satisfy the equation 

N 

L aii = O. 
i=l 

More generally, in order to eliminate the nth order error term (n ~ N - 1), the weights 
must satisfy the equation, 

N 

L aiin = O. 
i=l 

We can write this set of restrictions more compactly in matrix form as 

1 1 1 1 1 
1 2 3 N 0 
1 4 9 N 2 

a=Va= 0 

1 2N - l 3N - l NN-l 0 

The matrix V is called a Vandermonde matrix, and is invertible for any value of N. We 
can thus obtain a by calculating 

(10) 

For example, for N = 3, we obtain 

(11) 

(12) 
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Substituting 0: into equation (9), and using equation (8), we get the following third order 
approximation of the infinitesimal generator of the process {Xd: 

1 
£f(Xt) = 6.1 [18Et (f(Xt+L1 ) - f(Xt)) - 9Et (f(Xt+2L1 ) - f(Xd) 

+ 2Et (f(Xt+3L1 ) - f(Xt ))] + 0(.13
). 

To approximate a particular function g( x), we now need merely to find a specific function 
f satisfying 

£f(x) = g(x). 

For our purposes, consider the functions 

f(1) (R) == R - Rt , 

f(2)(S) == S - St, 

f(3)(R) == (R - Rt )2 , 

2 
f(4) (S) == (S - St) , 

f(5) (R, S) == (R - Rt) (S - St) . 

From the definition of £, we have 

£f(1) (R) = /-LR(R, S), 

£f(2) (S) = /-Ls(R, S), 

£f(3)(R) = 2(R - Rt)/-LR(R, S) + O"~(R, S), 

£f(4) (S) = 2(S - St)/-Ls(R, S) + (J~(R, S), 

£f(5)(R, S) = (S - St)/-LR(R, S) + (R - Rt)/-Ls(R, S) + p(R, S)O"R(R, S)O"s(R, S). 

Evaluating these at R = Rt , S = St, we obtain 

£f(1) (Rt) = /-LR (Rt, St), 

£f(2) (St) = /-Ls(Rt, St), 

£f(3)(Rt) = O"~(Rt, St), 

£f(4) (St) = (J~(Rt, St), 

£f(5) (Rt, St) = p(Rt, SdO"R(Rt , St)O"s(Rt, St). 

Using each of these functions in turn as the function f above, we can generate approxima­
tions to /-LR, /-Ls, (JR, O"s and p respectively. For example, the third order approximations 
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(taking square roots for CT Rand CT S) are 

1 
IlR(Rt , St) = 6,1 [18Et (Rt+L1 - Rt) - gEt (Rt+2L1 - Rt ) + 2Et (RH3 L1 - Rt )] 

+ 0(,13), 

1 
Ils(Rt , St) = 6,1 [18Et (SHL1 - St) - gEt (SH2L1 - Sd + 2Et (SH3L1 - St)] 

+ 0(,13), 

1 
6,1 ( 

18Et [(Rt+L1 - Rt )2] - gEt [(Rt+2L1 - Rt)2] 

+2Et [(Rt+3 L1 - Rt)2] 

~ ( 18Et [CSHL1 - St)2] - gEt [CSH2L1 - St)2] 

6,1 +2Et [CSH3L1 - St)2] 

1 
CTRS(Rt , St) = 6,1 (18Et [(RHL1 - Rt ) (SHL1 - St)] 

- gEt [(RH2L1 - Rt ) (SH2L1 - St)] 

+2Et [(RH3L1 - Rt ) (SH3L1 - St)]) . 

) 
) 

(13) 

The approximations of the drift, volatility and correlation coefficients are written in 
terms of the true first, second and cross moments of multiperiod changes in the two 
state variables. If the two-factor assumption is appropriate, and a large stationary time 
series is available, then these conditional moments can be estimated using appropriate 
nonparametric methods. In this chapter, we estimate the moments using multivariate 
density estimation, with appropriately chosen factors as the conditioning variables. All 
that is required is that these factors span the same space as the true state variables.6 The 
results for daily changes were provided in Section 2. Equation (13) shows that these esti­
mates are an important part of the approximations to the underlying continuous-time 
dynamics. By adding multiperiod extensions of these nonparametric estimated condi­
tional moments, we can estimate the drift, volatility and correlation coefficients of the 
multifactor process described by equations (5) and (6). 

Figure 14.8 provides the first, second and third order approximations to the diffusion 
of the short rate against the short rate level and the slope of the term structure. 7 The 
most notable result is that a first order approximation works well; thus, one can consider 
the theoretical results of this section as a justification for discretization methods cur­
rently used in the literature. The description of interest rate behavior given in Section 2, 
therefore, carries through to the continuous-time setting. Our major finding is that the 

6See Duffie and Kan (1996) for a discussion of the conditions under which this is possible (in a linear 
setting). 

7Figures showing the various approximations to the drift of the short rate, the drift and diffusion of 
the slope, and the correlation between the short rate and the slope are available upon request. 
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Fig. 14.8. First, second and third order approximations to the diffusion (annualized) 
of the short rate versus the short rate and the slope of the term structure 

volatility of interest rates is increasing in the level of interest rates mostly for sharply 
upward sloping term structures. The question then is what does Figure 14.8, and more 
generally the rest of the estimated process, mean for fixed-income pricing? 

4. A generalized Longstaff and Schwartz {1992} model 

Longstaff and Schwartz (1992) provide a two-factor general equilibrium model df the 
term structure. Their model is one of the more popular versions within the affine class of 
models for describing the yield curve (see also Cox, Ingersoll and Ross, 1985; Chen and 
Scott, 1995; Duffie and Kan, 1996; and Dai and Singleton, 2000). In the Longstaff and 
Schwartz setting, all fixed-income instruments are functions of two fundamental factors, 
the instantaneous interest rate and its volatility. These factors follow diffusion processes, 
which in turn lead to a fundamental valuation condition for the price of any bond, or 
bond derivative. As an alternative, here we also present a two-factor continuous-time 
model for interest rates. The results of Section 2 suggest that the affine class may qe too 
restrictive. I 

Although our results shed valuable light on the factors driving interest rate movements 
there are potential problems in using this specification to price interest rate contingent 
claims. A general specification for R t and St (and the associated prices of risk) may 
allow arbitrage opportunities if either of these state variables is a known function of an 
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asset price.8 Of course, this point is true of all previous estimations of continuous-time 
processes to the extent that they use a priced proxy as the instantaneous rate. If we are 
willing to assume that we have the right factors, however, then there is no problem in 
an asymptotic sense. That is, as we are estimating these processes nonparametrically, as 
the sample size gets larger, our estimates will converge to the true functions, which are 
automatically arbitrage-free (if the economy is). Nevertheless, this is of little consolation 
if we are trying to use the estimated functions to price assets. 

To get around this problem, we need to write the model in a form in which neither 
state variable is an asset price or a function of asset prices. In this chapter, we follow 
convention by using the observable three-month yield as a proxy for the instantaneous 
rate, Rt . Furthermore, suppose that the mapping from (R, S) to (R,O"R) is invertible,9 
so we can write asset prices as a function of Rand 0" R, instead of Rand S. 10 As 0" R is 
not an asset price, using this variable avoids the inconsistency problem. 

Specifically, suppose that the true model governing interest rate movements is a 
generalization of the two-factor Longstaff and Schwartz (1992) model, 

dRt = J-LR(R, 0") dt + 0" dZ1 , 

dO"t = J-La(R, O")dt + p(R, O")s(R, 0") dZ1 + v'l- p2 8 dZ2 , 

where dZ1 dZ2 = O.ll In vector terms, 

d(Rt,O"t) = !vI dt + e dZ, 

where 

!vI == (~:) , 

e == (;8 J 1 ~ p2 8) . 

(14) 

(15) 

Asset prices, and hence the slope of the term structure, can be written as some function 
of the short rate and instantaneous short rate volatility, S(R, 0"). 

From equations (14) and (15), how do we estimate the underlying processes for R 
and 0" given the estimation results of Section 3? Although the short rate volatility, 0", is 
not directly observable, it is possible to estimate this process. Specifically, using Ito's 

8See , for example, Duffie, Ma and Yong (1995). The problem is that, given such a model, we can 
price any bond, and are thus able to calculate what the state variable "ought" to be. Without imposing 
any restrictions on the assumed dynamics for R t and St, there is no guarantee that we will get back to 

the same value of the state variable that we started with. 
9That is, for a given value of Rt, the volatility, JR, is monotonic in the slope, S. This is the case in 

most existing multifactor interest rate models, including, for example all affine models, such as Longstaff 
and Schwartz (1992). 

loThis follows by writing 

V(R, S) = V(R, S(R, JR)) == U(R, JR)' 

11 This specification is the most convenient to deal with, as we now have orthogonal noise terms. The 
correlation between the diffusion terms is p, and the overall variance of J is 8 2 dt. 
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Lemma, together with estimates for I1R, uR, I1s, uS and p, it is possible to write 

dut = uRdRt + usdSt + ~ [uRRu2 (Rt , St) + ussu~(Rt, St) 

+2uRsu(Rt , St)us(Rt , St)p(Rt, St)] dt. 
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Given this equation, and the assumption that the function S(R, u) is invertible, the 
dynamics of Ut can be written as a function of the current level of Rand u in a 
straightforward way. 

This procedure requires estimation of a matrix of second derivatives. Although there 
are well-known problems in estimating higher order derivatives using kernel density 
estimation techniques, it is possible to link the results of Section 2 and 3 to this general­
ized Longstaff and Schwartz (1992) model. In particular, using estimates of the second 
derivatives (not shown), several facts emerge. First, due to the small magnitudes of the 
estimated drifts of the state variables Rand S, the drift of u depends primarily on the 
second order terms. Consequently, the importance of the second factor (the slope) is 
determined by how much the sensitivity of short rate volatility to this factor changes 
relative to the changes in the sensitivity to the first factor (the level). The general pat­
tern is that volatility increases at a slower rate for high levels and a faster rate for high 
slopes. Consequently, for high volatilities and levels, the drift of volatility is negative, 
generating mean reversion. The effect of the second factor, however, is to counter this 
phenomenon. Second, the diffusion of u is determined by the sensitivities of short rate 
volatility to the two factors and the magnitudes of the volatilities of the factors. Based 
on the estimates of the volatilities and derivatives, the slope has the dominant influ­
ence on this effect. In particular, the volatility of u is high for upward sloping term 
structures, which also correspond to states with high short rate volatility. Moreover, sen­
sitivity of this diffusion to the two factors is larger in the slope direction than in the level 
direction. 

As an alternative to the above method, we can estimate an implied series for u by 
assuming that the function S(R, u) is invertible, i.e., that we can equivalently write the 
model in the form 

dRt = I1R(Rt , St)dt + u(Rt, St)dZ; 

dSt = I1s(Rt , St)dt + us(Rt , St)dZ~, 

where Zi and Z2 may be correlated. To estimate the function u(R, S), we apply the 
methodology described in Section3.1 to the function i(3)(R, S) == (R - Rt)2. Apply­
ing the estimated function to each observed (R, S) pair in turn yields a series for the 
volatility u, which we can then use in estimating the generalized Longstaff and Schwartz 
(1992) model given in equations (14) and (15).12 This procedure is in stark contrast 
to that of Longstaff and Schwartz (1992), and others, who approximate the dynamics 
of the volatility factor as a Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH) process. The GARCH process is not strictly compatible with the underlying 
dynamics of their continuous-time model; here, the estimation is based on approximation 

12 Although the use of an estimated series for (J rather than the true series may not be the most efficient 
approach, this procedure is consistent. That is, the problem will disappear as the sample size becomes 
large, and our pointwise estimates of (J converge to the true values. 
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Fig. 14.9. Scatter plot of the three-month rate versus the term structure volatility over 
the 1983-2006 period 

schemes to the diffusion process and is internally consistent. Due to the difficulties in 
estimating derivatives, we choose this second approach to estimate the continuous-time 
process. 13 

4.1. A general two-factor diffusion process: Empirical results 

Figures 14.10-14.12 show approximations to equation (15) for the generalized Longstaff 
and Schwartz (1992) process as a function of the two factors, the instantaneous short 
rate and its volatility. It is important to point out that there are few available data at low 
short rates/high volatilities and high short rates/low volatilities, which corresponds to 
the earlier comment about interest rates and slopes (see Figure 14.9). Therefore, results 
in these regions need to be treated cautiously. 

Figures 14.10 and 14.11 provide the estimates of the continuous-time process for the 
second interest factor, namely its volatility. Several observations are in order. First, there 
is estimated mean-reversion in volatility; at low (high) levels of volatility, volatility tends 
to drift upward (downward). The effect of the level of interest rates on this relation 
appears minimal. Second, and perhaps most important, there is clear evidence that the 
diffusion of the volatility process is increasing in the level of volatility, yet is affected 

13 Although the first approach provides similar results to the second approach, the functional forms 
underlying the second method are more smooth and thus more suitable for analysis. 

'" I 
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Fig. 14.10. First order approximation to the drift (annualized) of the volatility versus 
the short rate and the volatility of the term structure 

by the level of interest rates only marginally. Moreover, volatility's effect is nonlinear in 
that it takes effect only at higher levels. This finding suggests extreme caution should 
be applied when inputting interest rate volatility into derivative pricing models. Most 
of our models take the relation between the level and volatility for granted; however, 
with increases from 3% to 11% in the interest rate level, both the drift and diffusion 
of volatility exhibit only mild increases. On the other hand, changes in the volatility 
level of much smaller magnitudes have a much larger impact on the volatility process. 
This finding links the term structure slope result documented earlier in the chapter to 
a second factor, namely the volatility of the instantaneous rate, and provides a close 
connection to the Engle, Lilien and Robins (1987) paper mentioned throughout this 
chapter. 

As the final piece of the multifactor process for interest rates, Figure 14.12 graphs a 
first order approximation of the correlation coefficient between the short rate and the 
volatility, given values of the two factors. Taken at face value, the results suggest a com­
plex variance-covariance matrix between these series in continuous-time. In particular, 
whereas the correlation decreases in the volatility for most interest rate levels, there 
appears to be some nonmonotonicity across the level itself. Why is correlation falling as 
volatility increases? Perhaps, high volatility, just like the corresponding high term struc­
ture slope, is associated with aggregate economic phenomena that are less related to the 
level of interest rates. Given that interest rates are driven by two relatively independent 
economic factors, namely expectations about both real rates and inflation, this argument 
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versus the short rate and the volatility of the term structure 

seems reasonable. It remains an open question, however, what the exact relationship is 
between Figure 14.12 and these economic factors. 

4.2. Valuation of fixed-income contingent claims 
Given the interest rate model described in equation (15), we can write the price of an 
interest rate contingent claim as V(r, cr, t), depending only on the current values of the 
two state variables plus time. Then, by Ito's Lemma, 

dV(r,cr,t) ( )d () () 
V( ) 

= m r, cr, t t + S1 r, cr, t dZ1 + S2 r, cr, t dZ2, 
r, cr, t 

(16) 

where 

1 
m(r, cr, t) V = vt + J.Lr(r, cr)VR + J.La(r, cr)Va + 2"trace [aT \72V(r, cr) a] , 

r 1 2 1 2 = vt + J.Lr(r,cr)vr + J.La(r,cr)Va + 2"cr Vrr + 2"s Vaa + pcrsVra , (17) 

S1 (r, cr, t) V = crVr + psVa, 

s2(r, cr, t) V = }1 - p2sVa. 
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4 A generalized Longstaff and Schwartz (1992) model 
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Fig. 14.12. First order approximation to the correlation coefficient between changes 
in the short rate and the volatility versus the short rate and the volatility of the term 
structure 

The volatility of the asset, O"v, is given by 

O"v V = V(O"Vr + pSVa)2 + (1 - p2) s2V;, 

= V0"2V? + 2pO"sVrVa + S2V;. 

vVith a one-factor interest rate model, to prevent arbitrage, the risk premium on any asset 
must be proportional to its standard deviation. 14 Similarly, with two factors, absence 
of arbitrage requires the excess return on an asset to be a linear combination of its 
exposure to the two sources of risk. Thus, if the asset pays out dividends at rate d, we can 
write 

(18) 

where Ar and Aa are the prices of short rate risk and volatility risk, respectively. Sub­
stituting equation (18) into equation (17), and simplifying, leads to a partial differential 
equation that must be satisfied by any interest rate contingent claim, assuming the usual 

14Suppose this did not hold for two risky assets. We could then create a riskless portfolio of 
these two assets with a return strictly greater than T, leading to an arbitrage opportunity (see 
IngersolL 1987). 
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technical smoothness and integrability conditions (see, for example, Duffie, 1988), 

(19) 

subject to appropriate boundary conditions. To price interest rate dependent assets, we 
need to know not only the processes governing movements in rand (7, but also the prices 
of risk, ,\. and Aa-. 

Equation (18) gives an expression for these functions in terms of the partial deriva­
tives Vr and Va-, which could be used to estimate the prices of risk, given estimates of 
these derivatives for two different assets, plus estimates of the excess return for each 
asset. As mentioned above, it is difficult to estimate derivatives precisely using nonpara­
metric density estimation. Therefore, instead of following this route, one could avoid 
directly estimating the partial derivatives, Vr and Va-, by considering the instantaneous 
covariances between the asset return and changes in the interest rate/volatility, CVr and 
eVa-. From equations (14), (15) and (16) (after a little simplification), 

(
cvr ) _ (dV dr /V dt) ( (72 
eVa- = dV d(7 /V dt = P(7S 

This can be inverted, as long as [p[ < 1, to obtain 

P(7S) -1 (ev r ) 
s2 eVa-' 

1 (1/ (72 

1 - p2 -p/(7S 
-P/(7S) (ev r ) 
1/s2 eVa-' 

(20) 

To preclude arbitrage, the excess return on the asset must also be expressible as a linear 
combination of eVr and eVa-, 

m = r - ~ + A * r(r, (7)eVr + A* a-(r, (7)eva-. (21) 

Given two different interest rate dependent assets, we can estimate the instantaneous 
covariances for each in the same way as we estimated p(r, (7) above. We can also estimate 
the excess return for each asset, mi(r, (7) - r as a function of the two state variables. The 
two excess returns can be expressed in the form 

which can be inverted to yield an estimate of the prices of risk, 

e~a-) -1 (m1 - r) . 
eVa- m2 - r 

Finally, for estimates of the more standard representation of the prices of risk, Ar and 
/\0") equate equations (18) and (21), using equation (20), to obtain 

pm,) (A*r) 
2 \ * . 

S /\ a-
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Given estimates for the process governing movements in rand 0', and the above 
procedure for the functions AT' and A(7, we can value interest rate dependent assets in one 
of two ways. The first is to solve equation (19) numerically using a method such as the 
Hopscotch method of Gourlay and McKee (1977). The second is to use the fact that we 
can write the solution to equation (19) in the form of an expectation. Specifically, we can 
write V, the value of an asset which pays out cash flows at a (possibly path-dependent) 
rate Ct , in the form 

v, = E [iT e- J:(f.l dUG, ds 1 ' 
where i follows the "risk adjusted" process, 

for all T > t, and where 

(22) 

(23) 

This says that the value of the asset equals the expected sum of discounted cash flows 
paid over the life of the asset, except that it substitutes the risk adjusted process (i,0') 
for the true process (r,o-). 

This representation leads directly to a valuation algorithm based on Monte Carlo 
simulation. For a given starting value of (rt, O't), simulate a number of paths for i and 
0' using equations (23) and (24). Along each path, calculate the cash flows Ct , and 
discount these back along the path followed by the instantaneous riskless rate, it. The 
average of the sum of these values taken over all simulated paths is an approximation to 
the expectation in equation (22), and hence to the security value, Vi. The more paths 
simulated, the closer the approximation. 

5. Conclusion 

This chapter provides a method for estimating multifactor continuous-time Markov 
processes. Using Milshtein's (1978) approximation schemes for writing expectations of 
functions of the sample path of stochastic differential equations in terms of the drift, 
volatility and correlation coefficients, we provide nonparametric estimation of the drift 
and diffusion functions of multivariate stochastic differential equations. We apply this 
technique to the short- and long-end of the term structure for a general two-factor, 
continuous-time diffusion process for interest rates. In estimating this process, several 
results emerge. First, the volatility of interest rates is increasing in the level of interest 
rates, only for sharply, upward sloping term structures. Thus, the result of previous stud­
ies, suggesting an almost exponential relation between interest rate volatility and levels, 
is due to the term structure on average being upward sloping, and is not a general result 
per se. Second. the finding that partly motivates this chapter, i.e., the link between slope 
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and interest rate volatility in Engle, Lilien and Robins (1987), comes out quite naturally 
from the estimation. Finally, the slope of the term structure, on its own, plays a large 
role in determining the magnitude of the diffusion coefficient. These volatility results 
hold across maturities, which suggests that a low dimensional system (with nonlinear 
effects) may be enough to explain the term structure of interest rates. 

As a final comment, there are several advantages of the procedure adopted in this 
chapter. First, there is a constant debate between researchers on the relative benefits of 
using equilibrium versus arbitrage-free models. Here, we circumvent this issue by using 
actual data to give us the process and corresponding prices of risk. As the real world 
coincides with the intersection of equilibrium and arbitrage-free models, our model is 
automatically consistent. Of course, in a small sample, statistical error will produce 
estimated functional forms that do not conform. This problem, however, is true of all 
empirical work. Second, we show how our procedure for estimating the underlying multi­
factor continuous-time diffusion process can be used to generate fixed income pricing. As 
an example, we show how our results can be interpreted within a generalized Longstaff 
and Schwartz (1992) framework, that is, one in which the drift and diffusion coefficients 
of the instantaneous interest rate and volatility are both (nonlinear) functions of the level 
of interest rates and the volatility. Third, and perhaps most important, the pricing of 
fixed-income derivatives depends crucially on the level of volatility. The results in this 
chapter suggest that volatility depends on both the level and slope of the term structure, 
and therefore contains insights into the eventual pricing of derivatives. 


